Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474792

RESUMO

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Assuntos
Cálcio , Colostro , Gravidez , Feminino , Animais , Camundongos , Bovinos , Cálcio/metabolismo , Colostro/metabolismo , Cálcio da Dieta/metabolismo , Osso e Ossos/metabolismo , Desenvolvimento Ósseo , Densidade Óssea , Proteínas na Dieta/farmacologia
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542450

RESUMO

Lung aging triggers the onset of various chronic lung diseases, with alveolar repair being a key focus for alleviating pulmonary conditions. The regeneration of epithelial structures, particularly the differentiation from type II alveolar epithelial (AT2) cells to type I alveolar epithelial (AT1) cells, serves as a prominent indicator of alveolar repair. Nonetheless, the precise role of aging in impeding alveolar regeneration and its underlying mechanism remain to be fully elucidated. Our study employed histological methods to examine lung aging effects on structural integrity and pathology. Lung aging led to alveolar collapse, disrupted epithelial structures, and inflammation. Additionally, a relative quantification analysis revealed age-related decline in AT1 and AT2 cells, along with reduced proliferation and differentiation capacities of AT2 cells. To elucidate the mechanisms underlying AT2 cell functional decline, we employed transcriptomic techniques and revealed a correlation between inflammatory factors and genes regulating proliferation and differentiation. Furthermore, a D-galactose-induced senescence model in A549 cells corroborated our omics experiments and confirmed inflammation-induced cell cycle arrest and a >30% reduction in proliferation/differentiation. Physiological aging-induced chronic inflammation impairs AT2 cell functions, hindering tissue repair and promoting lung disease progression. This study offers novel insights into chronic inflammation's impact on stem cell-mediated alveolar regeneration.


Assuntos
Células Epiteliais Alveolares , Pulmão , Humanos , Células Epiteliais Alveolares/metabolismo , Células Cultivadas , Pulmão/metabolismo , Diferenciação Celular/fisiologia , Inflamação/metabolismo
3.
Int J Genomics ; 2014: 978609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386556

RESUMO

The molecular basis of attenuation of foot-and-mouth disease virus (FMDV) serotype Asia1 ZB strain remains unknown. To understand the genetic changes of attenuation, we compared the entire genomes of three different rabbit-passaged attenuated ZB strains (ZB/CHA/58(att), ZBRF168, and ZBRF188) and their virulent parental strains (ZBCF22 and YNBS/58). The results showed that attenuation may be brought about by 28 common amino acid substitutions in the coding region, with one nucleotide point mutation in the 5'-untranslated region (5'-UTR) and another one in the 3'-UTR. In addition, a total of 21 nucleotides silent mutations had been found after attenuation. These substitutions, alone or in combination, may be responsible for the attenuated phenotype of the ZB strain in cattle. This will contribute to elucidation of attenuating molecular basis of the FMDV ZB strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...